
95-865 Unstructured Data Analytics

Slides by George H. Chen

Lecture 6: Wrap up manifold learning,
intro to clustering

Administrivia

• Friendly reminder: please look at the PDF that you’re submitting
before you submit it (check that everything displays correctly)

• You now have access to 13 real past Quiz 1s
(see my Canvas announcements)

• There’s an optional Quiz 1 review session tomorrow (Tuesday Mar 25)
7pm-8:30pm

• It’s over Zoom (check Canvas -> Zoom for the link)

• HW1 is due tonight

• 😱 Quiz 1 is this Friday during your recitation slot
(5pm-6:20pm HBH A301)

• Material coverage: up to today’s lecture (Mar 24 lecture)

Reminder of Quiz 1 (and Quiz 2) Format

• Open notes (must be on paper and not electronic)

• In-person, on paper

Format:

• No electronics may be used during the exam
(e.g., do not use a laptop, tablet, phone, calculator)

• Each quiz is 80 minutes

There is no limit on how many sheets of notes you bring

Dimensionality Reduction for Visualization
• There are many methods (I've posted a link on the course webpage to

a scikit-learn example using ~10 methods)

• PCA is good to try first (look at plot & explained variance ratios)

• PCA is very well-understood; the new axes can be interpreted

• If you have good reason to believe that only certain features matter, of
course you could restrict your analysis to those!

• Nonlinear dimensionality reduction (manifold learning):
new axes may not really be all that interpretable

• t-SNE can be annoying to use but is still very popular

• Promising recently developed alternative: PaCMAP (Wang et al 2021)
accounts for local and global structure simultaneously and also uses
“mid-near” neighbors of points — link on course webpage

• If PCA works poorly, then t-SNE could be a good 2nd thing to try

Let’s look at images

(Flashback) Multiple Documents

Text doc #1

Text doc #2

Text doc #n

<latexit sha1_base64="B1pwU2JRVAB4dpn6t+NGyIzL2QQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMF+wFtKJvNpl272Q27k0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbITFMcMkayFGwdqoZSULBWuHwbua3RkwbruQjjlMWJKQvecwpQSs1u6NIoemVK17Vm8NdJX5OKpCj3it/dSNFs4RJpIIY0/G9FIMJ0cipYNNSNzMsJXRI+qxjqSQJM8Fkfu3UPbNK5MZK25LoztXfExOSGDNOQtuZEByYZW8m/ud1MoxvggmXaYZM0sWiOBMuKnf2uhtxzSiKsSWEam5vdemAaELRBlSyIfjLL6+S5kXVv6p6D5eV2m0eRxFO4BTOwYdrqME91KEBFJ7gGV7hzVHOi/PufCxaC04+cwx/4Hz+AMzBj0Y=</latexit>XXX

☀ ☁ ☂ ☃
Feature vector #1

Feature vector #2

Choose a common vocabulary to
use across all documents

This idea of representing data as feature
vectors is very general — not just for text!

Feature vector #n

<latexit sha1_base64="B1pwU2JRVAB4dpn6t+NGyIzL2QQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMF+wFtKJvNpl272Q27k0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbITFMcMkayFGwdqoZSULBWuHwbua3RkwbruQjjlMWJKQvecwpQSs1u6NIoemVK17Vm8NdJX5OKpCj3it/dSNFs4RJpIIY0/G9FIMJ0cipYNNSNzMsJXRI+qxjqSQJM8Fkfu3UPbNK5MZK25LoztXfExOSGDNOQtuZEByYZW8m/ud1MoxvggmXaYZM0sWiOBMuKnf2uhtxzSiKsSWEam5vdemAaELRBlSyIfjLL6+S5kXVv6p6D5eV2m0eRxFO4BTOwYdrqME91KEBFJ7gGV7hzVHOi/PufCxaC04+cwx/4Hz+AMzBj0Y=</latexit>XXX

Image source: The Mandalorian

Example: Representing an Image

1

Go row by row and look at pixel values

1: black
0: white

Image source: The Mandalorian

Example: Representing an Image
Go row by row and look at pixel values

1: black
0: white

1 0.9

Image source: The Mandalorian

Example: Representing an Image
Go row by row and look at pixel values

1: black
0: white

1 0.9 <latexit sha1_base64="pnDg8Z093VXRE90cSKEbn4ZZtVA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqn55f1lrNIo4ynACp3AOHlxDA+6gCS1g8AjP8ApvjnJenHfnY9FacoqZY/gD5/MHsKuPNg==</latexit>· · · 0.1

Image source: The Mandalorian

Example: Representing an Image

1 0.9 <latexit sha1_base64="pnDg8Z093VXRE90cSKEbn4ZZtVA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqn55f1lrNIo4ynACp3AOHlxDA+6gCS1g8AjP8ApvjnJenHfnY9FacoqZY/gD5/MHsKuPNg==</latexit>· · · 0.1 0.9<latexit sha1_base64="pnDg8Z093VXRE90cSKEbn4ZZtVA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqn55f1lrNIo4ynACp3AOHlxDA+6gCS1g8AjP8ApvjnJenHfnY9FacoqZY/gD5/MHsKuPNg==</latexit>· · ·

1: black
0: white

Go row by row and look at pixel values

dimensions = image height × image width

Very high dimensional!

Terminology Remark

• number of axes we can index into for a table/array
(e.g., 2D means there are rows & columns)

⚠ We use “dimension” to means two different things:

• total number of entries in the table/array

1 0.9 <latexit sha1_base64="pnDg8Z093VXRE90cSKEbn4ZZtVA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqn55f1lrNIo4ynACp3AOHlxDA+6gCS1g8AjP8ApvjnJenHfnY9FacoqZY/gD5/MHsKuPNg==</latexit>· · · 0.1 0.9<latexit sha1_base64="pnDg8Z093VXRE90cSKEbn4ZZtVA=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqn55f1lrNIo4ynACp3AOHlxDA+6gCS1g8AjP8ApvjnJenHfnY9FacoqZY/gD5/MHsKuPNg==</latexit>· · ·

dimensions = 1

dimensions = image height × image width

Dimensionality Reduction for Images

Demo

2D t-SNE plot of handwritten digit images shows clumps that
correspond to real digits — this is an example of clustering structure

showing up in real data

Remark on “Label Information”

Many real UDA problems:
The data are messy and it’s not

obvious what the “correct” labels/
answers look like — what “correct”

means can be ambiguous!

Later on in the course (when we cover predictive analytics), we look at how
to take advantage of knowing the “correct” answers

Top right image source: https://bost.ocks.org/mike/miserables/

Example: Trying to
understand how people

interact in a social
network

Important:
Handwritten digit demo is a
toy example where we know
which images correspond to

digits 0, 1, …, 9

Clustering Structure Often Occurs!

Clustering methods aim to group together data points that are
“similar” into “clusters”, while having different clusters be “dissimilar”

• Crime might happen more often in specific hot spots

• Users in a recommendation system can share similar taste in products

• People applying for micro loans have a few specific uses in mind
(education, electricity, healthcare, etc)

Lots of real examples, such as:

Clustering methods will either directly assume a specific meaning of
“similarity”, or some allow you to specify a similarity/distance function

But what does “similar” or “dissimilar” mean?

Note: distance is inversely related to similarity
(two points being more similar ⟺ they are closer in distance)

Defining Similarity/Distance
The Art of

By far the most popular approach: if your data are represented as
feature vectors, use Euclidean distance between feature vectors

Example: Spell Check

Distance between “apple” and “ap;ple”?

One way to compute: find minimum number of single-letter
insertions/deletions/substitutions to convert one to the other

(called the Levenshtein distance)

Example: Comparing Different People’s Brain Scans

FreeSurfer software: “align” different people’s brain scans by mapping them
to a common coordinate system on a sphere

Clustering Methods

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering

Top-down: Start with everything in 1
cluster and decide on how to recursively

split

1. Pretend data generated
by specific model with

parameters

2. Learn the parameters
("fit model to data")

Bottom-up: Start with everything in its
own cluster and decide on how to

iteratively merge clusters

Several main categories (although there are other categories!):

3. Use fitted model to determine
cluster assignments

We mainly focus on this

We're going to start with
perhaps the most famous of

clustering methods

It won't yet be apparent what this method has
to do with generative models

k-means
Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

Step 1: Guess where cluster centers are

of clusters Distance function: Euclidean

k-means
Step 1: Guess where cluster centers are

Distance function: Euclidean

Cluster centers are orange points
(outline says whether it is the blue

or red cluster)

of clusters

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means

Step 2: Assign each point to belong to the closest cluster

Step 1: Guess where cluster centers are

Distance function: Euclidean# of clusters

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Step 1: Guess where cluster centers are

Distance function: Euclidean# of clusters

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Step 1: Guess where cluster centers are

Distance function: Euclidean# of clusters

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat

Step 1: Guess where cluster centers are

Distance function: Euclidean# of clusters

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)
Repeat

Step 1: Guess where cluster centers are

Distance function: Euclidean# of clusters

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Step 1: Guess where cluster centers are

Distance function: Euclidean# of clusters

Repeat

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Step 1: Guess where cluster centers are

Distance function: Euclidean# of clusters

Repeat

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Step 1: Guess where cluster centers are

Distance function: Euclidean# of clusters

Repeat

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence:

Step 1: Guess where cluster centers are

Distance function: Euclidean

cluster centers & cluster assignments
no longer change

of clusters

Step 0: Guess k

We’ll guess k = 2

Example: choose k points
uniformly at random

(without replacement) to
be initial guesses for

cluster centers

k-means
Final output: cluster centers, cluster assignment for every point

Remark: Very sensitive to
choice of k and initial cluster

centers

Suggested way to pick initial cluster centers: “k-means++” method

How to guess k?

We’ll discuss this
in more detail next

lecture

(rough intuition: incrementally add centers; favor adding center far away
from centers chosen so far)

When does k-means work well?

k-means is related to a generative model, which will help us
understand when k-means is expected to work well

